Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(4): 2348-2357, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38499398

RESUMO

Covalent adaptable networks (CANs) are being developed as future replacements for thermosets as they can retain the high mechanical and chemical robustness inherent to thermosets but also integrate the possibility of reprocessing after material use. Here, covalent adaptable polyimine-based networks were designed with methoxy and allyloxy-substituted divanillin as a core component together with long flexible aliphatic fatty acid-based amines and a short rigid chain triamine, yielding CANs with a high renewable content. The designed series of CANs with reversible imine functionality allowed for fast stress relaxation and tailorability of the thermomechanical properties, as a result of the ratio between long flexible and short rigid amines, with tensile strength (σb) ranging 1.07-18.7 MPa and glass transition temperatures ranging 16-61 °C. The CANs were subsequently successfully reprocessed up to three times without determinantal structure alterations and retained mechanical performance. The CANs were also successfully chemically recycled under acidic conditions, where the starting divanillin monomer was recovered and utilized for the synthesis of a recycled CAN with similar thermal and mechanical properties. This promising class of thermosets bearing sustainable dynamic functionalities opens a window of opportunity for the progressive replacement of fossil-based thermosets.


Assuntos
Aminas , Ácidos Graxos , Vidro , Iminas , Temperatura
2.
Commun Chem ; 7(1): 62, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514785
3.
ACS Omega ; 7(16): 14305-14316, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35573211

RESUMO

Structural variations (oligolactide segments, functionalized end groups, and different plasticizer cores) were utilized to tailor the performances of biobased plasticizers for polylactide (PLA). Six plasticizers were developed starting from 1,4-butanediol and isosorbide as cores: two monomeric (1,4-butanediol levulinate and isosorbide levulinate) and four oligomeric plasticizers with hydroxyl or levulinate ester end groups (1,4-butanediol-based oligolactide, isosorbide-based oligolactide, 1,4-butanediol-based oligomeric levulinate, and isosorbide-based oligomeric levulinate). Structural variations in plasticizer design were reflected in the thermal stability, plasticizing efficiency, and migration resistance. The monomeric plasticizer 1,4-butanediol levulinate decreased the glass-transition temperature of PLA from 59 to 16 °C and increased the strain at break substantially from 6 to 227% with 20 wt % addition. 1,4-Butanediol-based oligomeric levulinate exhibited better thermal stability and migration resistance, though the plasticizing efficiency was slightly lower (glass-transition temperature = 28 °C; strain at break = 202%). Compared to PLA films plasticized by plasticizers with flexible butanediol cores, those plasticized by plasticizers with rigid isosorbide cores exhibited higher Young's modulus and thermal stability and lower plasticizing efficiency. Furthermore, plasticizers with levulinate ester end groups had improved thermal stability, plasticizing efficiency, and migration resistance compared to the corresponding plasticizers with hydroxyl end groups. Hence, a set of controlled structural variations in plasticizer design were successfully demonstrated as a potent route to tailor the plasticizer performances.

4.
Angew Chem Int Ed Engl ; 61(33): e202204531, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35582840

RESUMO

Chemical recycling of poly(L-lactic acid) to the cyclic monomer L-lactide is hampered by low selectivity and by epimerization and elimination reactions, impeding its use on a large scale. The high number of side reactions originates from the high ceiling temperature (Tc ) of L-lactide, which necessitates high temperatures or multistep reactions to achieve recycling to L-lactide. To circumvent this issue, we utilized the impact of solvent interactions on the monomer-polymer equilibrium to decrease the Tc of L-lactide. Analyzing the observed Tc in different solvents in relation to their Hildebrand solubility parameter revealed a "like recycles like" relationship. The decreased Tc , obtained by selecting solvents that interact strongly with the monomer (dimethyl formamide or the green solvent γ-valerolactone), allowed chemical recycling of high-molecular-weight poly(L-lactic acid) directly to L-lactide, within 1-4 h at 140 °C, with >95 % conversion and 98-99 % selectivity. Recycled L-lactide was isolated and repolymerized with high control over molecular weight and dispersity, closing the polymer loop.


Assuntos
Dioxanos , Poliésteres , Dioxanos/química , Poliésteres/química , Polímeros/química , Solventes
5.
Glob Chall ; 5(7): 2000119, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34267926

RESUMO

Selective hydrolysis of polyamide-6 (PA-6) and polyamide-66 (PA-66) from commercial multicomponent PA-6/PA-66/polypropylene (PP) carpet is demonstrated by a microwave-assisted acid catalyzed hydrothermal process, yielding monomeric products and solid polypropylene residue. First, an effective method is established to chemically recycle neat PA-6 and PA-66 granules using microwave irradiation. The optimized, hydrochloric acid (HCl) catalyzed process leads to selective production of monomers, 6-aminocaproic acid or adipic acid and hexamethylenediamine, after only 30 min. A piece of commercial carpet is then recycled using the same reaction conditions, but with the alteration of the reaction time from 1 to 6 h. The produced water-soluble products and the remaining solid residue are carefully characterized, proving that the polyamide-part of the carpet is selectively hydrolyzed into water-soluble monomers and the polypropylene-part remains as an unconverted solid that can be further used to produce recycled filaments containing the carpet residue and virgin polypropylene. The developed process opens the possibility to recycle multicomponent materials, such as carpets, through selective hydrolysis. It can also contribute to a circular economy, producing original monomers and materials ready for a new life-cycle.

6.
Biomolecules ; 10(7)2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698323

RESUMO

Dual-functioning additives with plasticizing and antibacterial functions were designed by exploiting the natural aromatic compound eugenol and green platform chemical levulinic acid or valeric acid that can be produced from biobased resources. One-pot synthesis methodology was utilized to create three ester-rich plasticizers. The plasticizers were thoroughly characterized by several nuclear magnetic resonance techniques (1H NMR, 13C NMR, 31P NMR, HSQC, COSY, HMBC) and by electrospray ionization-mass spectrometry (ESI-MS) and their performances, as plasticizers for polylactide (PLA), were evaluated. The eugenyl valerate was equipped with a strong capability to depress the glass transition temperature (Tg) of PLA. Incorporating 30 wt% plasticizer led to a reduction of the Tg by 43 °C. This was also reflected by a remarkable change in mechanical properties, illustrated by a strain at break of 560%, almost 110 times the strain for the breaking of neat PLA. The two eugenyl levulinates also led to PLA with significantly increased strain at breaking. The eugenyl levulinates portrayed higher thermal stabilities than eugenyl valerate, both neat and in PLA blends. The different concentrations of phenol, carboxyl and alcohol functional groups in the three plasticizers caused different bactericidal activities. The eugenyl levulinate with the highest phenol-, carboxyl- and alcohol group content significantly inhibited the growth of Staphylococcus aureus and Escherichia coli, while the other two plasticizers could only inhibit the growth of Staphylococcus aureus. Thus, the utilization of eugenol as a building block in plasticizer design for PLA illustrated an interesting potential for production of additives with dual functions, being both plasticizers and antibacterial agents.


Assuntos
Antibacterianos/farmacologia , Eugenol/farmacologia , Plastificantes/farmacologia , Poliésteres/química , Antibacterianos/química , Varredura Diferencial de Calorimetria , Escherichia coli/efeitos dos fármacos , Eugenol/química , Química Verde , Ácidos Levulínicos/química , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Ácidos Pentanoicos/química , Plastificantes/química , Espectrometria de Massas por Ionização por Electrospray , Staphylococcus aureus/efeitos dos fármacos , Termodinâmica
7.
Biomacromolecules ; 20(5): 1956-1964, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-30920203

RESUMO

A facile one-pot spray-drying process was developed for fabrication and in situ crosslinking of chitosan microspheres to improve the adsorption capacity by microscopic design. A fully biobased nature was achieved by utilizing genipin (GP) as a crosslinking agent and chitosan-derived nanographene oxide (nGO) as a property tuner. The produced chitosan microspheres were further proven as powerful adsorbents for common wastewater contaminants such as anionic dyes and pharmaceutical contaminants, here modeled by methyl orange (MO) and diclofenac sodium (DCF). By regulating the amount of GP and nGO, as well as by controlling the process parameters including the spray-drying inlet temperature and postheat treatment, the surface morphology, size, zeta potential, and adsorption efficiency of the microspheres could be tuned accordingly. The adsorption efficiency for MO and DCF reached 98.9 and 100%, respectively. The microspheres retained high DCF adsorption efficiency after six adsorption and desorption cycles, and the recyclability was improved by the incorporated nGO. The fabricated microspheres, thus, have great potential as reusable and eco-friendly adsorbents.


Assuntos
Quitosana/análogos & derivados , Microesferas , Purificação da Água/métodos , Adsorção , Compostos Azo/química , Diclofenaco/química , Grafite/química , Iridoides/química , Águas Residuárias/química , Molhabilidade
9.
Biomacromolecules ; 19(7): 3077-3085, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29897737

RESUMO

Biobased unsaturated polyester thermosets as potential replacements for petroleum-based thermosets were designed. The target of incorporating rigid units, to yield thermosets with high thermal and mechanical performance, both in the biobased unsaturated polyester (UP) and reactive diluent (RD) while retaining miscibility was successfully achieved. The biobased unsaturated polyester thermosets were prepared by varying the content of isosorbide, 1,4-butanediol, maleic anhydride, and succinic anhydride in combination with the reactive diluent isosorbide-methacrylate (IM). Isosorbide was chosen as the main component in both the UP and the RD to enhance the rigidity of the formed thermosets, to overcome solubility issues commonly associated with biobased UPs and RDs and volatility and toxicity associated with styrene as RD. All UPs had good solubility in the RD and the viscosity of the mixtures was primarily tuned by the feed ratio of isosorbide but also by the amount of maleic anhydride. The flexural modulus and storage modulus were tailorable by altering the monomer composition The fabricated thermosets had superior thermal and mechanical properties compared to most biobased UP thermosets with thermal stability up to about 250 °C and a storage modulus at 25 °C varying between 0.5 and 3.0 GPa. These values are close to commercial petroleum-based UP thermosets. The designed tailorable biobased thermosets are, thus, promising candidates to replace their petroleum analogs.


Assuntos
Fontes Geradoras de Energia , Isossorbida/química , Poliésteres/síntese química , Butileno Glicóis/química , Anidridos Maleicos/química , Metacrilatos/química , Poliésteres/toxicidade , Solubilidade , Anidridos Succínicos/química , Volatilização
10.
Carbohydr Polym ; 196: 135-145, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29891280

RESUMO

A sustainable strategy to fabricate chitosan-based composite hydrogels with tunable properties and controllable adsorption capacity of trace pharmaceuticals was demonstrated. Two biobased modifiers were utilized to tune the properties, nano-graphene oxide (nGO) derived from chitosan via microwave-assisted carbonization and oxidation, and genipin as the crosslinking agent. An increase in genipin content facilitated an increase in the degree of crosslinking as shown by improved storage modulus and decreased swelling ratio. Increasing nGO content changed the surface microtopography of the hydrogel which correlated with the surface wettability. nGO also catalyzed the genipin-crosslinking reaction. The hydrogel was further shown to be an effective adsorbent for a common anti-inflammatory drug, diclofenac sodium (DCF), with the removal efficiency ranging from 91 to 100% after 48 h. DCF adsorption efficiency could be tuned through simple alteration of nGO and genipin concentration, which provides promising potential for this environmental-friendly adsorbent in removal of DCF from pharmaceutical waste water.

11.
Biomacromolecules ; 19(5): 1573-1581, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29584417

RESUMO

A pathway to biobased polyamides (PAs) via ring-opening aminolysis-condensation (ROAC) under benign conditions with diverse structure was designed. Ethylene brassylate (EB), a plant oil-derived cyclic dilactone, was used in combination with an array of diamines of diverse chemical structure, and ring-opening of the cyclic dilactone EB was revealed as a driving force for the reaction. The ROAC reactions were adjusted, and reaction conditions of 100 °C under atmospheric pressure using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as a catalyst for 24 h were optimal. The structures of the polyamides were confirmed by mass spectroscopy, FTIR, and NMR, and the PAs had viscosity average molecular weights ( Mη) of ∼5-8 kDa. Glassy or semicrystalline PAs with glass transition temperatures between 48 and 55 °C, melting temperatures of 120-200 °C for the semicrystalline PAs, and thermal stabilities above 400 °C were obtained and were comparable to the existing PAs with similar structures. As a proof-of-concept of their usage, one of the PAs was shown to form fibers by electrospinning and films by melt pressing. Compared to conventional methods for PA synthesis, the ROAC route portrayed a reaction temperature at least 60-80 °C lower, could be readily carried out without a low-pressure environment, and eliminated the use of solvents and toxic chemicals. Together with the plant oil-derived monomer (EB), the ROAC route provided a sustainable alternative to design biobased PAs.


Assuntos
Éteres Cíclicos/química , Nylons/síntese química , Técnicas de Química Sintética/métodos , Polimerização
12.
RSC Adv ; 8(68): 39022-39028, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35558332

RESUMO

The current work explores the sodium hydride mediated polycondensation of aliphatic diols with diethyl carbonate to produce both aliphatic polycarbonates and cyclic carbonate monomers. The lengths of the diol dictate the outcome of the reaction; for ethylene glycol and seven other 1,3-diols with a wide array of substitution patterns, the corresponding 5-membered and 6-membered cyclic carbonates were synthesized in excellent yield (70-90%) on a 100 gram scale. Diols with longer alkyl chains, under the same conditions, yielded polycarbonates with an M w ranging from 5000 to 16 000. In all cases, the macromolecular architecture revealed that the formed polymer consisted purely of carbonate linkages, without decarboxylation as a side reaction. The synthetic design is completely solvent-free without any additional post purification steps and without the necessity of reactive ring-closing reagents. The results presented within provide a green and scalable approach to synthesize both cyclic carbonate monomers and polycarbonates with possible applications within the entire field of polymer technology.

13.
Macromol Biosci ; 17(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28809095

RESUMO

An increased sustainabile awarness has inspired the development of new polymeric networks in a remarkable way and this strive should be combined with environmentally concerned end-uses. Therefore, a UV-crosslinked polyhydroxyurethane film with antibacterial properties is developed. First, a hydroxyurethane precursor is synthesized using aminolysis condensation, circumventing the use of isocyanates. The films are subsequently crosslinked under solvent-free conditions through a UV-triggered thiol-ene mechanism. The reactions are monitored by 1 H nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy, and the networks have gel contents above 90%, and are transparent, hydrophilic, and highly flexible. Antibacterial properties are achieved by a controlled quaternization of the network's tertiary-amine and methylation of thiol-ether functionality, resulting in quaternary ammonium compounds (QACs) and sulfonium compounds. The antibacterial properties are evaluated against both Escherichia coli and Staphylococcus aureus using the agar plate diffusion and tube shaking methods. The QAC-loaded films exhibit outstanding bactericide properties (>99.9%) and the antibacterial mechanism is demonstrated to be a dual killing mechanism, i.e., diffusion killing and contact active killing.


Assuntos
Antibacterianos/farmacologia , Reagentes de Ligações Cruzadas/química , Géis/química , Isocianatos/química , Poliuretanos/química , Raios Ultravioleta , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Termogravimetria
14.
Polymers (Basel) ; 9(3)2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30970763

RESUMO

Superior plasticization efficiency was achieved by a grafting from functionalization of the PVC backbone. This was deduced to a synergistic effect of internal plasticization and improved intermolecular interactions between PVC and an oligomeric poly(butylene succinate-co-adipate) (PBSA) plasticizer. A mild grafting process for functionalization of the PVC chain by crotonic acid (CA) or acrylic acid (AA) was used. The formation of PVC-g-CA and PVC-g-AA was confirmed by FTIR and ¹H NMR. Grafting with the seemingly similar monomers, CA and AA, resulted in different macromolecular structures. AA is easily homopolymerized and long hydrophilic poly(acrylic acid) grafts are formed resulting in branched materials. Crotonic acid does not easily homopolymerize; instead, single crotonic acid units are located along the PVC chain, leading to basically linear PVC chains with pendant crotonic acid groups. The elongation of PVC-g-CA and PVC-g-AA in comparison to pure PVC were greatly increased from 6% to 128% and 167%, respectively, by the grafting reactions. Blending 20% (w/w) PBSA with PVC, PVC-AA or PVC-CA further increased the elongation at break to 150%, 240% and 320%, respectively, clearly showing a significant synergistic effect in the blends with functionalized PVC. This is a clearly promising milestone towards environmentally friendly flexible PVC materials.

15.
J Polym Sci A Polym Chem ; 54(13): 1908-1918, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27812238

RESUMO

An array of branched poly(ɛ-caprolactone)s was successfully synthesized using an one-pot inimer promoted ring-opening multibranching copolymerization (ROCP) reaction. The biorenewable, commercially available yet unexploited comonomer and initiator 2-hydroxy-γ-butyrolactone was chosen as the inimer to extend the use of 5-membered lactones to branched structures and simultaneously avoiding the typical tedious work involved in the inimer preparation. Reactions were carried out both in bulk and in solution using stannous octoate (Sn(Oct)2) as the catalyst. Polymerizations with inimer equivalents varying from 0.01 to 0.2 were conducted which resulted in polymers with a degree of branching ranging from 0.049 to 0.124. Detailed ROCP kinetics of different inimer systems were compared to illustrate the branch formation mechanism. The resulting polymer structures were confirmed by 1H, 13C, and 1H-13C HSQC NMR and SEC (RI detector and triple detectors). The thermal properties of polymers with different degree of branching were investigated by DSC, confirming the branch formation. Through this work, we have extended the current use of the non-homopolymerizable γ-butyrolactone to the branched polymers and thoroughly examined its behaviors in ROCP. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 1908-1918.

16.
Biomacromolecules ; 17(12): 3995-4002, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27783494

RESUMO

Full control over the ceiling temperature (Tc) enables a selective transition between the monomeric and polymeric state. This is exemplified by the conversion of the monomer 2-allyloxymethyl-2-ethyl-trimethylene carbonate (AOMEC) to poly(AOMEC) and back to AOMEC within 10 h by controlling the reaction from conditions that favor ring-opening polymerization (Tc > T0) (where T0 is the reaction temperature) to conditions that favor ring-closing depolymerization (Tc < T0). The ring-closing depolymerization (RCDP) mirrors the polymerization behavior with a clear relation between the monomer concentration and the molecular weight of the polymer, indicating that RCDP occurs at the chain end. The Tc of the polymerization system is highly dependent on the nature of the solvent, for example, in toluene, the Tc of AOMEC is 234 °C and in acetonitrile Tc = 142 °C at the same initial monomer concentration of 2 M. The control over the monomer to polymer equilibrium sets new standards for the selective degradation of polymers, the controlled release of active components, monomer synthesis and material recycling. In particular, the knowledge of the monomer to polymer equilibrium of polymers in solution under selected environmental conditions is of paramount importance for in vivo applications, where the polymer chain is subjected to both high dilution and a high polarity medium in the presence of catalysts, that is, very different conditions from which the polymer was formed.


Assuntos
Dioxanos/química , Polímeros/química , Catálise , Peso Molecular , Polimerização , Temperatura
17.
Biomacromolecules ; 17(9): 2930-6, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27445061

RESUMO

A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 µm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry.


Assuntos
Ácido Glutâmico/química , Substâncias Macromoleculares/química , Peptídeos/química , Polimerização , Água/química , Dessecação , Tamanho da Partícula
18.
Biomacromolecules ; 17(3): 699-709, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26795940

RESUMO

The need for polymers for high-end applications, coupled with the desire to mimic nature's macromolecular machinery fuels the development of innovative synthetic strategies every year. The recently acquired macromolecular-synthetic tools increase the precision and enable the synthesis of polymers with high control and low dispersity. However, regardless of the specificity, the polymerization behavior is highly dependent on the monomeric structure. This is particularly true for the ring-opening polymerization of lactones, in which the ring size and degree of substitution highly influence the polymer formation properties. In other words, there are two important factors to contemplate when considering the particular polymerization behavior of a specific monomer: catalytic specificity and thermodynamic equilibrium behavior. This perspective focuses on the latter and undertakes a holistic approach among the different lactones with regard to the equilibrium thermodynamic polymerization behavior and its relation to polymer synthesis. This is summarized in a monomeric overview diagram that acts as a presynthetic directional cursor for synthesizing highly specific macromolecules; the means by which monomer equilibrium conversion relates to starting temperature, concentration, ring size, degree of substitution, and its implications for polymerization behavior are discussed. These discussions emphasize the importance of considering not only the catalytic system but also the monomer size and structure relations to thermodynamic equilibrium behavior. The thermodynamic equilibrium behavior relation with a monomer structure offers an additional layer of complexity to our molecular toolbox and, if it is harnessed accordingly, enables a powerful route to both monomer formation and intentional macromolecular design.


Assuntos
Lactonas/química , Polimerização , Termodinâmica
19.
Chem Mater ; 28(10): 3298-3307, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29503506

RESUMO

A combined surface treatment (i.e., surface grafting and a layer-by-layer (LbL) approach) is presented to create advanced biomaterials, i.e., 3D poly(l-lactide) (PLLA) microsphere scaffolds, at room temperature. The grafted surface plays a crucial role in assembling polyelectrolyte multilayers (PEMs) onto the surface of the microspheres, thus improving the physicochemical properties of the 3D microsphere scaffolds. The grafted surface of the PLLA microspheres demonstrates much better PEM adsorption, improved surface coverage at low pH, and smoother surfaces at high pH compared with those of nongrafted surfaces of PLLA microspheres during the assembly of PEMs. They induce more swelling than nongrafted surfaces after the assembly of the PEMs and exhibit blue emission after functionalization of the microsphere surface with a fluorescent dye molecule. The 3D scaffolds functionalized with and without nanosheets not only exhibit good mechanical performance similar to the compressive modulus of cancellous bone but also exhibit the porosity required for cancellous bone regeneration. The magnetic nanoparticle-functionalized 3D scaffolds result in an electrical conductivity in the high range of semiconducting materials (i.e., 1-250 S cm-1). Thus, these 3D microsphere scaffolds fabricated by surface grafting and the LbL approach are promising candidates for bone tissue engineering.

20.
ACS Sustain Chem Eng ; 4(7): 3757-3765, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29503773

RESUMO

Restrained properties of "green" degradable products drive the creation of materials with innovative structures and retained eco-attributes. Herein, we introduce the creation of impact modifiers in the form of core-shell (CS) particles toward the creation of "green" composite materials. Particles with CS structure constituted of PLA stereocomplex (PLASC) and a rubbery phase of poly(ε-caprolactone-co-d,l-lactide) (P[CL-co-LA]) were successfully achieved by spray droplet atomization. A synergistic association of the soft P[CL-co-LA] and hard PLASC domains in the core-shell structure induced unique thermo-mechanical effects on the PLA-based composites. The core-shell particles enhanced the crystallization of PLA matrices by acting as nucleating agents. The core-shell particles functioned efficiently as impact modifiers with minimal effect on the composites stiffness and strength. These findings provide a new platform for scalable design of polymeric-based structures to be used in the creation of advanced degradable materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...